PurposeOwing to their topographic location and nutrient rich soils, riparian forests are often converted to pastures for grazing. In recent decades, remnant riparian forests cleared for grazing pastures have been restored with native species. The impacts of such land-use changes on soil fungal communities are unclear, despite the central roles that soil fungi play in key ecosystem processes. We investigated how soil fungal taxonomic and functional composition are affected by land-use change at different depths, and if variation in soil fungal communities is related to edaphic properties and extant vegetation.MethodsThe study was conducted in six waterways in south-eastern Australia, each comprising three land-use types: remnant riparian forest, cleared forest converted to pasture, and pastures restored with native plants. We surveyed three strata of vegetation and sampled top-soil and sub-soil to characterise physicochemical properties and soil fungal communities. ITS1 region sequences were used to assign soil fungal taxonomic and functional composition.ResultsFungal taxonomic and functional composition infrequently varied with land-use change or soil depth. Overall, environmental properties (soil and vegetation) explained 35–36% of variation in both fungal taxonomic and functional composition. Soil fungal taxonomic composition was related to soil fertility (N, P, K, pH and Ca) and ground cover characteristics, whereas functional composition was related to clay content, sub-canopy cover and tree basal area.ConclusionAcross the six studied waterways, fungal taxonomic and functional composition were more strongly associated with land-use mediated changes in site-scale soil physicochemical properties and vegetation structure than broad-scale classes of land-use type.
Read full abstract