Mountain bikes continue to be the largest segment of U.S. bicycle sales, totaling some USD 577.5 million in 2017 alone. One of the distinguishing features of the mountain bike is relatively wide tires with thick, knobby treads. Although some work has been done on characterizing street and commuter bicycle tires, little or no data have been published on off-road bicycle tires. This work presents laboratory measurements of inflated tire profiles, tire contact patch footprints, and force and moment data, as well as static lateral and radial stiffness for various modern mountain bike tire sizes including plus size and fat bike tires. Pacejka’s Motorcycle Magic Formula tire model was applied and used to compare results. A basic model of tire lateral stiffness incorporating individual tread knobs as springs in parallel with the overall tread and the inflated carcass as springs in series was derived. Finally, the influence of inflation pressure was also examined. Results demonstrated appreciable differences in tire performance between 29 × 2.3”, 27.5 × 2.8”, 29 × 3”, and 26 × 4” knobby tires. The proposed simple model to combine tread knob and carcass stiffness offered a good approximation, whereas inflation pressure had a strong effect on mountain bike tire behavior.
Read full abstract