Abstract

To suppress the low frequency vibrations of airborne photoelectric system and improve measurement accuracy, a novel passive airborne photoelectric quasi-zero stiffness platform (APQZSP), which is composed of upper/bottom planes, anti-shaking structure and six quasi-zero stiffness (QZS) legs, is designed. The QZS leg is constructed by connecting the folded beam spring with magnetic negative stiffness spring (MNSS) in parallel. According to current model, the magnetic force and negative stiffness of MNSS are derived. As the friction damping is introduced with anti-shaking structure, the isolation performance of the platform under friction damping is investigated based on harmonic balance method. Then the effect of damping and excitation on the isolation performance is analyzed. The results indicate that with the QZS technology, the resonant frequency of the platform is reduced and the low frequency vibrations can be effectively isolated with APQZSP. Moreover, the friction damping can maintain the displacement transmissibility at unity as long as the excitation frequency is lower than the break-loose frequency, and then the resonance can be avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.