This article is the further work of previous papers and also the first study to adopt the elliptic integral approach to solve the forced nonlinear structural acoustic problem. A previous elliptic integral approach, which was only used for the free vibration analyses of various nonlinear structural acoustic problems, is modified and custom designed for conducting this forced vibration analysis. The main advantage of the proposed approach is that one elliptic cosine contains various harmonic components, while one simple cosine term only carries one particular harmonic component. That is why the proposed solution form can be more concise than those in the harmonic balance procedures. This is the first study to employ the proposed elliptic cosine solution form for the forced vibration and sound transmission of a nonlinear panel backed by a partitioned cavity. This study has two focuses: (1) the development of elliptic integral approach for solving the nonlinear structural acoustic governing equations, and (2) the effect of partitioned cavities on the forced vibration response and sound transmission loss. Moreover, a set of elliptic cosine solutions is verified by that from the modified residue harmonic balance method. A mode convergence study and a harmonic contribution analysis are also conducted.
Read full abstract