Abstract

A smart micro-perforated panel (MPP) is investigated in order to enhance sound absorption performance of MPP absorbers, especially at low frequencies. The smart MPP consists of a conventional MPP and a surface-bonded piezoelectric ceramic (PZT) shunted with single- or multiple-resonance circuit. A three-dimensional (3D) finite element model is used to investigate the coupling effects between MPP and the shunted PZT. The numerical results demonstrate three energy-dissipation mechanisms: mechanical damping, electrical shunt damping, and Helmholtz resonance of the MPP. The effects of different multimode shunt design methods are explored so as to intensify the panel vibration and hence improve sound absorption. A low-frequency broadband sound absorber can then be constructed based on the strong coupling among the acoustical, electrical, and mechanical domains. Several absorption peaks induced by electromechanical coupling are found in the frequencies lower than the Helmholtz resonance frequency of MPP. The electrical and mechanical responses of the proposed absorber are investigated in detail. In the experiment, the transfer function of the shunt circuit of the proposed absorber is tested with a network analyser, and the sound absorption coefficients are measured in the impedance tube based on the two-microphone transfer function method. Fair agreement between experimental and numerical results is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call