Grant-free multiple access (GFMA) protocol has been regarded as a key element to support sporadic traffic generated from massive internet-of-things (IoT) networks. In GFMA protocol, each IoT device transmits data packets without grant from a base station (BS) via pre-reserved uplink resources. Packet collisions inherently occur when multiple IoT devices transmit packets by using the same radio resource, but the collision effect can be alleviated with multi-packet reception (MPR) capability of the BS. Since a number of studies have focused on improving the physical layer performance such as bit error rate, they may be hard to provide intuitions from the MAC layer perspective when a number of IoT devices sporadically generate uplink packets and attempt the GFMA. In this paper, we thoroughly investigate the GFMA from the MAC layer perspective. We provide an analytical framework based on a Markov chain to capture the performance of the GFMA in terms of packet transmission success probability, ergodic throughput, and access delay. Through simulations, we validate our analytical framework and verify the necessity of adopting MPR technique for supporting a massive number of IoT devices generating sporadic traffic.