A palladium-catalyzed dearomative syn-1,4-oxyamination protocol using non-activated arenes has been developed. This one-pot procedure utilizes arenophile chemistry, and the corresponding para-cycloadducts are treated with oxygen nucleophiles via formal allylic substitution, providing direct access to syn-1,4-oxyaminated products. The reaction conditions permit a range of arenes, as well as different O-nucleophiles, such as oximes and benzyl alcohols. Moreover, this process was established in an asymmetric fashion, delivering products with high enantioselectivity. The dearomatized products are amenable to a multitude of further derivatizations ranging from olefin chemistry to C-H activation, giving rise to a diverse set of new functionalities. Overall, this dearomative functionalization offers rapid and controlled formation of molecular complexity, enabling straightforward access to functionalized small molecules from simple and readily available arenes.