Abstract

Copper-catalyzed alkene amino oxygenation reactions using O-acylhydroxylamines have been achieved for a rapid and modular access to diverse 1,2-amino oxygen-containing molecules. This transformation is applicable to the use of alcohols, carbonyls, oximes, and thio-carboxylic acids as nucleophiles on both terminal and internal alkenes. Mild reaction conditions tolerate a wide range of functional groups, including ether, ester, amide, carbamate, and halide. The reaction protocol allows for starting with free amines as the precursor of O-benzoylhydroxylamines to eliminate their isolation and purification, contributing to broader synthetic utilities. Mechanistic investigations reveal the amino oxygenation reactions may involve distinct pathways, depending on different oxygen nucleophiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call