PurposeThe purpose of the paper is to study effect of the implantation of oxygen and helium ions on the corrosion performance of the AISI3l6L stainless steel. It presents useful new results which allows one to draw conclusions as to the suitability of the helium and oxygen ion implanted AISI 316L stainless steel for biomedical use in the body.Design/methodology/approachThe implantation of oxygen and helium ions was done on AISI 316L SS at an energy level of 100 keV at a dose of 1×1017 ions/cm2, at room temperature. In order to simulate the natural tissue environment, an electrochemical test using cyclic polarization was done in a 0.9 percent sodium chloride solution at a pH value of 6.3 at 37°C. This was carried out on both the virgin and implanted AISI 316L stainless steel for the purpose of comparing performance. In addition to this, the hardness of the virgin and implanted samples was also studied using Vickers microhardness tester with varying loads. Besides, the surface morphologies of the implanted samples and the corroded samples were studied with XRD and SEM.FindingsFrom the study the following findings are made. First, the XRD and SEM results were found to be in accordance with the corrosion test results. Second, the general corrosion behavior showed a significant improvement in the case of both helium implanted (icorr=0.0689 mA/cm2) and oxygen implanted (icorr=1.104 mA/cm2), when compared to the virgin AISI 316L SS (icorr=1.2187 mA/cm2). The pitting corrosion showed a significant improvement for helium implanted (Epit=230 mV) when compared to virgin material (Epit=92 mV). The oxygen implanted has not shown any improvement (Epit=92 mV). The surface hardness is found to be 1202 HV for helium implanted and 1020 HV for oxygen implanted, while it is found to be 195 HV for the virgin material. The hardness of the helium and oxygen implanted samples is found to be increased by about 600 percent and 500 percent, respectively, when compared to the virgin samples. Helium implanted samples show better performance in terms of corrosion resistance and hardness when compared to those of the oxygen implanted samples.Originality/valueAlthough a number of authors have conducted many research on AISI 316L stainless steel, this work has original experimental results in terms of the oxygen and helium ion implantation parameters used and the specific tests: microhardness, electrochemical corrosion test, SEM and XRD that were used. It thus presents useful new results which allows one to draw conclusions as to the suitability of the Helium and Oxygen ion implanted AISI 316L stainless steel for biomedical use.
Read full abstract