Oxalate decarboxylase converts oxalate to formate and CO2 without requiring organic cofactors, making it biotechnologically relevant for applications in food, agriculture, and diagnostics. Its activity is highly dependent on pH; however, the pH-dependent catalytic mechanism remains poorly understood. This study identified a novel oxalate decarboxylase, BsOxdC, from Bacillus safensis and investigated its catalytic properties through heterologous expression and enzymatic assays. The purified BsOxdC efficiently degrades oxalate at an optimum temperature of 50°C and a pH of 4.0, achieving a Vmax of 8.54μmol/(min·mg). The apparent values of kcat, Km, and kcat/Km were 85.35s-1, 4.67μM, and 18.28μM/s, respectively. The predicted structure of BsOxdC features two conserved cupin barrel folds at the N-terminal and C-terminal. Additionally, the docking model of the oxalate-BsOxdC complex is more stable than those of the formate-BsOxdC or acetate-BsOxdC complexes due to its lowest binding energy. In the open conformation of BsOxdC, the carboxyl group of the catalytic residue E181, located in the active loop S180E181N182S183T184, points away from both the oxalate and the active-site Mn ion. Simulations suggest that S180 and E181 interact with the substrate via ionic bonds and/or water bridges only at low pH (4.0), not at pH8.0. Additionally, THR184 forms more molecular interactions with oxalate at pH4.0 than at pH8.0.
Read full abstract