Abstract

The inability to demulsify oil-in-water emulsions via green and efficient processes is a challenging problem in many industrial processes. As a novel biodemulsifier, protein demulsifiers display excellent dispersibility and stability, but their demulsification mechanisms are not clear, which severely restricts their large-scale production and application. In this study, the demulsification mechanism of the high-efficiency protein biodemulsifier oxalate decarboxylase (Bacm OxdC), which is secreted by the Bacillus mojavensis XH1 strain, for an oil-in-water emulsion was analyzed. The results showed that Bacm OxdC was spontaneously adsorbed at the oil-water interface and turned its hydrophobic amino acids outward to increase its hydrophobicity and break the emulsified system. Furthermore, it effectively reduced the oil-water interfacial tension and interfacial film strength, thereby reducing the oil-water interfacial energy and finally enabling demulsification. To further improve the demulsification efficiency and reusability, Fe3O4@SiO2@OxdC-DDSA was prepared. This method provided a magnetic response for Bacm OxdC and enabled efficient demulsification. The demulsification rate of Fe3O4@SiO2@OxdC-DDSA reached 98.1% at 24 h, which was 30.7% higher than that of the original Bacm OxdC. After three cycles, the demulsification rate still reached 89.3%, proving it has excellent recyclability. This work is the first study on the demulsification mechanism of protein biodemulsifiers and provides useful insights into the demulsification mechanism of biodemulsifiers for oil-in-water emulsions. In addition, a promising high-efficiency modification technique for protein biodemulsifiers was proposed, which provided information for the development of biodemulsifiers for oil-water separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call