Abstract

ABSTRACTA novel ternary sulfonated polyacrylamide was synthesized using 2,2′-azobis[2- methylpropionamidine] dihydrochloride and redox initiation system as initiator, respectively. The competitive adsorption of the ternary sulfonated polyacrylamide (TSPAM) and sodium dodecyl benzene sulfonate (SDBS) on the oil-water interface was investigated by equilibrium interfacial tension, interfacial viscoelasticity, zeta potendial and interfacial film strength. The SDBS molecules in the surfactant-polymer (SP) system preferentially adsorb on the oil-water interface due to the amphiphilic structure of the SDBS molecules. Electrostatic force between the charged groups of the polyacrylamide and the head groups of surfactant adsorbed on the interface in the SP system leads to the formation of the complex interface film, which is helpful to enhance the stability of the oil-water interface. The ternary sulfonated polyacrylamide (TSPAM) has a similar influence on the other interface properties with SDBS except the interfacial tension. The interfacial tension decreases and then increases with increasing of the TSPAM concentration due to the competitive adsorption of the TSPAM molecules and the SDBS molecules on the oil-water interface. Moreover, TSPAM has the more influence on the stability of oil-water interface than partially hydrolyzed polyacrylamide (HPAM) in the SP system, and the addition of TSPAM is better to improve the stability of emulsion in the SP flooding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.