Abstract

Oxalic acid (OA) is one of the pathogenic factors of Botrytis cinerea. Trichoderma afroharzianum exerts both antagonistic and oxalate-degrading effects on B. cinerea. This study aimed to investigate the relationship between the elimination of OA by T. afroharzianum and its antagonistic effects on B. cinerea. Reversed-phase high performance liquid chromatogram (RP-HPLC) analysis showed that T. afroharzianum LTR-2 eliminated 10- or 20-mmol/L OA within 120 h, with the degradation being particularly efficient at the concentration of 20 mmol/L. RNA-seq analysis showed that the oxalate decarboxylase (OXDC) gene Toxdc, β-1,3-exoglucanase gene Tglu and aspartic protease gene Tpro of LTR-2 were significantly upregulated after treatment with 20-mmol/L OA. RT-qPCR analysis showed that under the conditions of confrontation, Toxdc and three cell wall degrading enzyme (CWDE) genes were upregulated before physical contact with B. cinerea. In addition, RT-qPCR analysis showed that OA synthesis in B. cinerea was not significantly affected by LTR-2. The results revealed a correlation between OA degradation and mycoparasitism in T. afroharzianum when antagonising B. cinerea at the transcriptional level. The relationship between OA degradation by T. afroharzianum and its effects against B. cinerea provide a new perspective on the antagonism of T. afroharzianum against B. cinerea. In addition, this study provides theoretical data for the scientific application of T. afroharzianum in the field of biocontrol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call