This paper shows solicitude for the generalized projective synchronization of Caputo fractional-order uncertain memristive neural networks (FOUMNNs) with multiple delays. By extending the constant scale factor to the time-varying function matrix, we establish an extraordinary synchronization mode called time-varying function matrix projection synchronization (TFMPS), which is a generalized version of traditional matrix projection synchronization, modified projection synchronization, complete synchronization, and anti-synchronization. To achieve the goal of TFMPS, we design a novel mixed controller including the open loop feedback control and impulsive control, which employs the state information in the time-delayed interval and the sampling information at the impulse instants. It has a prominent advantage that impulse intervals are not restricted by time delays. To establish the connection between the error system and the auxiliary system, a generalized fractional-order comparison theorem with time-varying coefficients and impulses is established. Applying the stability theory, the comparison theorem, and the Laplace transform, new synchronization criteria of FOUMNNs are acquired under the mixed impulsive control schemes, and the derived synchronization theorem and corollary can effectively expand the correlative synchronization achievements of fractional-order systems.
Read full abstract