Abstract
We introduce a novel, gaseous target optical shaping laser set-up, capable to generate short scale length, near-critical target profiles via generated colliding blast waves. These profiles are capable to maintain their compressed density for several nanoseconds, being therefore ideal for laser-plasma particle acceleration experiments in the near critical density plasma regime. Our proposed method overcomes the laser-target synchronization limitations and delivers energetic protons, during the temporal evolution of the optically shaped profile, in a time window of approximately 2.5 ns. The optical shaping of the gas-jet profiles is optimised by MagnetoHydroDynamic simulations. 3D Particle-In-Cell models, adopting the spatiotemporal profile, simulate the 45 TW femtosecond laser plasma interaction to demonstrate the feasibility of the proposed proton acceleration set-up. The optical shaping of gas-jets is performed by multiple, nanosecond laser pulse generated blastwaves. This process results in steep gradient, short scale length plasma profiles, in the near critical density regime allowing operation at high repetition rates. Notably, the Magnetic Vortex Acceleration mechanism exhibits high efficiency in coupling the laser energy into the plasma in the optically shaped targets, resulting to collimated proton beams of energies up to 14 MeV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.