This paper presents a flipped voltage follower (FVF) based output-capacitor-less low-dropout regulator (OCL-LDO) with fast transient response, high power supply rejection (PSR), and low quiescent current for noise-sensitive circuits in internet-of-things (IoTs). An adaptive super source follower (ASSF) is proposed to effectively reduce the output impedance of the voltage buffer under heavy-loading conditions while keeping a low quiescent current under light-loading conditions. The active capacitor compensation management (ACCM) is proposed to solve the charge-sharing problem caused by the floating capacitors in the dynamic capacitor compensation circuit. The proposed OCL-LDO has been designed and fabricated in 22-nm CMOS technology. It can stabilize with load current ranging from 0 to 12 mA while consuming only 4.8-μA quiescent current. when the load current steps from 0.1 to 10 mA within 3.8 ns, the measured voltage undershoot is 55 mV and the recovery time is about 60 ns.