Abstract

An output-capacitorless low-dropout regulator (OCL-LDO) using a dual-active feedback frequency compensation (DAFFC) scheme with both transient and stability enhancement has been presented in this paper. The DAFFC scheme consists of two parallel active feedback paths, which creates two pole-zero pairs to effectively enhance the stability and transient response for the proposed OCL-LDO. Compared to the conventional single-path active-feedback frequency compensation method, the proposed DAFFC technique has provided one more design freedom with one more active feedback loop deployed and has been proved to be capable of obtaining better compensation effects with the same capacitor budget. Besides, the induced extra ac currents by the two active feedback loops have also enhanced the transient response of the proposed OCL-LDO. To substantiate the proposed DAFFC, a telescopic cascode output stage for error amplifier, and two on-chip compensation capacitors (5 and 1 pF, respectively) are needed. The proposed OCL-LDO has been implemented in 65-nm CMOS technology and the active chip area is 0.0105 mm2. The output voltage is 0.8 V, and the minimum input voltage is 0.95 V at 100-mA loading current. The proposed OCL-LDO can work stably in a load range of 0 to 100 mA with 14-μA quiescent current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.