Abstract

An output capacitor-less low-dropout (OCL-LDO) voltage regulator with dual active feedback paths is presented in this paper. The dual active feedbacks provide frequency compensation and spike voltage suppression. Two feedback loops are formed by capacitors Cc and Ca, respectively. The capacitor Ca path detects output voltage to suppress undershoot and overshoot during load transient. The frequency compensation is achieved by capacitor Cc, which helps the LDO regulator not only improve stability, but also enhance transient response without large current consumption. The total utilized capacitance values are only 1.5 pF. The proposed OCL-LDO was fabricated in 0.18 μm CMOS technology with supply voltage of 1.8 V. The LDO consumes 21 μA of quiescent current and the chip area is 0.47 mm × 0.49 mm. The measured output voltage difference is 90 mV when the load current is increased from 50 μA to 100 mA with CL= 100 pF and recovery time less than 1 μs. The power supply rejection is − 51.7 dB at 1 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.