The degradation of Belamcanda chinensis (L.) DC. polysaccharides was carried out by five concentrations of trifluoroacetic acid (TFA) (1–5 mol/L), and their physicochemical properties, degradation kinetics and anticomplementary activity were investigated. The findings revealed a notable reduction in the molecular weight of BCP, from an initial value of 2.622 × 105 g/mol to a final value of 6.255 × 104 g/mol, and the water solubility index increased from 90.66 ± 0.42 % to 97.78 ± 0.43 %. The degraded polysaccharides of B. chinensis exhibited a comparable monosaccharide composition comprising Man, GalA, Glc, Gal, and Ara. As the concentration of TFA increased, the degradation rate constant increased from 1.468 × 10−3 to 5.943 × 10−3, and the process followed the first-order degradation kinetic model (R2 > 0.97) and the random fracture model (R2 > 0.96). Furthermore, the five degraded polysaccharides still exhibit good thermal stability. In vitro experiments showed that DBCP-3 exhibited more potent anticomplementary activity than the original polysaccharides and positive drugs, which was strongly correlated with its Mw (r = 0.6–0.8), inhibiting complement activation by blocking C2 and C4. These results indicated that TFA degradation has a positive effect on polysaccharides, of which DBCP-3 is expected to treat diseases involving hyperactivation of the complement system.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access