DRAM memory is a performance bottleneck for many applications, due to its high access latency. Previous work has mainly focused on data locality, introducing small-but-fast regions to cache frequently accessed data, thereby reducing the average latency. However, these locality-based designs have three challenges in modern multi-core systems: 1) Inter-application interference leads to random memory access traffic. 2) Fairness issues prevent the memory controller from over-prioritizing data locality. 3) Write-intensive applications have much lower locality and evict substantial dirty entries. With frequent data movement between the fast in-DRAM cache and slow regular arrays, the overhead induced by moving data may even offset the performance and energy benefits of in-DRAM caching. In this paper, we decouple the data movement process into two distinct phases. The first phase is Load-Reduced Destructive Activation (LRDA), which destructively promotes data into the in-DRAM cache. The second phase is Delayed Cycle-Stealing Restoration (DCSR), which restores the original data when DRAM bank is idle. LRDA decouples the most time-consuming restoration phase from activation, and DCSR hides the restoration latency through prevalent bank-level parallelism. We propose FASA-DRAM incorporating destructive activation and delayed restoration techniques to enable both in-DRAM caching and proactive latency-hiding mechanisms. Our evaluation shows that FASA-DRAM improves the average performance by 19.9% and reduces average DRAM energy consumption by 18.1% over DDR4 DRAM for four-core workloads, with less than 3.4% extra area overhead. Furthermore, FASA-DRAM outperforms state-of-the-art designs in both performance and energy efficiency.