Abstract
Risky driving is a major factor in traffic incidents, necessitating constant monitoring and prevention through Intelligent Transportation Systems (ITS). Despite recent progress, a lack of suitable data for detecting risky driving in traffic surveillance settings remains a significant challenge. To address this issue, Bayonet-Drivers, a pioneering benchmark for risky driving detection, is proposed. The unique challenge posed by Bayonet-Drivers arises from the nature of the original data obtained from intelligent monitoring and recording systems, rather than in-vehicle cameras. Bayonet-Drivers encompasses a broad spectrum of challenging scenarios, thereby enhancing the resilience and generalizability of algorithms for detecting risky driving. Further, to address the scarcity of labeled data without compromising detection accuracy, a novel semi-supervised network architecture, named DGMB-Net, is proposed. Within DGMB-Net, an enhanced semi-supervised method founded on a teacher-student model is introduced, aiming at bypassing the time-consuming and labor-intensive tasks associated with data labeling. Additionally, DGMB-Net has engineered an Adaptive Perceptual Learning (APL) Module and a Hierarchical Feature Pyramid Network (HFPN) to amplify spatial perception capabilities and amalgamate features at varying scales and levels, thus boosting detection precision. Extensive experiments on widely utilized datasets, including the State Farm dataset and Bayonet-Drivers, demonstrated the remarkable performance of the proposed DGMB-Net.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.