ABSTRACT A simultaneous heat and mass transfer due to microrotating Darcy-Forchheimer flow of hybrid nanofluid over a moving thin needle is investigated. Darcy-Forchheimer medium accommodating hybrid nanofluid flow yields greater heat transfer rate, thereby leading to greater mass transfer rate over thin needle in industrial applications such as blood flow problems, aerodynamics, transportation, coating of wires, lubrication, and geothermal power generation. The thermophoresis and Brownian motion phenomena are introduced to enrich thermal treatment. Heat and mass transfer are accompanied by Cattaneo-Christov heat and mass flux. The hybrid nanofluid is radiative and dissipative in nature. Arrhenius pre-exponential factor law is introduced. Entropy generation analysis is carried out. The 4th order Runge-Kutta method along with shooting technique is devised to get requisite numerical solution of the transformed non-dimensional system of equations. Darcy-Forchheimer effect to simultaneous heat and mass transfer of microrotating hybrid nanofluid flow over thin needle subject to non-linear slip is the novelty of present study which is beyond of previous investigations. Rise in Forchheimer number (strengthening Darcy Forchheimer medium) leads to surface viscous drag decreases by 11.11% for hybrid nanofluid and 10.78% for pure nanofluid indicating the control of momentum transfer, thereby regulating heat transfer rate effectively.
Read full abstract