Abstract
The present paper presents the numerical conclusion to solve sixth order initial value ordinary differential equation (ODE). The concept of order conditions for three stage eighth order (RKSD8) & four stage ninth order Runge-Kutta methods (RKSD9) has been derived for finding global truncation error of differential equation The global and local truncated errors norms, zero stability of extended Runge-Kutta method (RK) is well defined and demonstrated with the help of an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.