As the demand for environmental sustainability grows in the global construction industry, traditional cement production faces significant challenges due to high energy consumption and substantial CO2 emissions. Therefore, developing low-carbon, high-performance alternative cementitious materials has become a research focus. This paper proposes a new low-carbon cement (alkali-activated lithium slag-fly ash composite cement, ALFC) as a substitute for traditional cement. First, the alkali activation reactivity of lithium slag (LS) is enhanced through calcination and grinding, revealing the reasons behind its improved reactivity. Then, alkali-activated LS and fly ash were partially used to replace cement to prepare ALFC, and the effects of the water-to-binder ratio (W/B), LS content, and NaOH addition on the flowability and mechanical properties of ALFC were investigated. XRD, SEM/EDS, and TG/DTG analyses were conducted to examine its hydration products and microstructure, revealing the hydration mechanism. The results show that the flowability of ALFC increases with W/B but decreases with a higher LS content. When W/B is 0.325 and the LS content is 25 wt.%, flowability reaches 200 mm, meeting construction requirements. LS calcined at 700 °C for 1 h significantly enhanced ALFC’s 90-day flexural and compressive strengths by 39.73% and 58.47%, respectively. The primary hydration products of ALFC are C-S-H, N-A-S-H, and C-A-S-H gels, with their content increasing as the NaOH concentration rises. The optimal NaOH concentration and LS content for ALFC are 2 mol/L and 25 wt.%, respectively.
Read full abstract