Abstract

Effects of hydrothermal parameters on morphology, crystal structure, light absorption, separation efficiency of photo-generated charge carriers, and photocatalytic removal of Bisphenol A (BPA) of Ti-based TiO2 nanomaterials were systematically investigated. Through changing hydrothermal parameters, TiO2 nanobelts, TiO2 nanosheets and TiO2 nanowires were prepared. With increasing NaOH concentration, hydrothermal temperature, and hydrothermal time, more TiO2 with (101) crystal plane grew on Ti substrate, resulting in higher crystallinity. The UV-light absorption enhanced with increasing NaOH concentration, but decreased with improving hydrothermal temperature, hydrothermal time, and HCl concentration. Variation of UV-light absorption was mainly affected by morphology, and UV-light absorption of TiO2 nanomaterials with different morphologies was arranged in order of nanobelts > nanosheets > nanowires. The hydrothermal growth of TiO2 nanomaterials on Ti plate conformed to Ostwald ripening mechanism. Variation trend of photo-generated current was consistent with that of BPA degradation, they both first increased and then decreased within investigated range. The optimal NaOH concentration, hydrothermal temperature, hydrothermal time, and HCl washing concentration were 1 M, 170℃, 28 h, and 0.1 M, respectively. Under this condition, Ti-based TiO2 nanosheets exhibited the highest BPA removal efficiency (92.7%), which was due to highly ordered nanosheet structure, good crystallinity, appropriate UV-light absorption and high separation efficiency of electron-hole pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.