Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould.
Read full abstract