Abstract

Managing a gas transport network is a complex problem because of the number of possibilities of routing the gas through the pipes. The most important aim in this kind of systems is to fulfill the demand within the pressure bounds, independently of its associated costs. However, in the present work some cost drivers are also taken into account by means of different objective functions in order to manage the network in an efficient way. This work deals with mathematical modeling and optimization of gas transport networks, where a two-stage procedure is proposed. In the first stage, optimization algorithms based on mathematical programming are applied to make some decisions (whether to activate compressor stations, control valves and other control elements) and gives an initial solution to the second stage. This last stage, which is based on control theory techniques, refines the solution to obtain more accurate results. Due to the reduced complexity in each stage, both can be solved within reasonable runtimes for relatively large gas networks. Based on the mathematical methods involved, a software called GANESOTM has been developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.