In this work, we have deposited the diamond-like carbon (DLC) coating on the tungsten carbide (WC) tool insert using the thermal chemical vapor deposition (CVD) method. For the growth of DLC coating, sugarcane bagasse was used as a carbon precursor. Raman spectroscopy, a field emission scanning electron microscope (FESEM), and X-ray diffraction (XRD) were used to confirm the presence of DLC coating on the tungsten carbide tool inserts. The hardness tests were also performed for inspecting the microhardness induced by the self-developed DLC coating on the tungsten carbide (WC) tool insert. To determine the optimum process parameters for the turning operation on an aluminum (6061) workpiece using a self-developed DLC-coated tungsten carbide (WC) tool insert, we have applied the technique for order preference by similarity to ideal solution (TOPSIS) methods. The process parameters considered for the optimization were feed rate, cutting speed, and depth of cut. Whereas chosen response variables were flank wear, temperature in the cutting zone, and surface roughness. TOPSIS is utilized to analyze the effects of selected input parameters on the selected output parameters. This study in this paper revealed that it was advantageous to develop the DLC coating on the tungsten carbide tool inserts for the machining applications. The results also revealed that a 0.635 mm depth of cut, feed rate of 0.2 mm/rev, and cutting speed of 480 m/min were the optimum combination of process parameters.
Read full abstract