Abstract

The application of the electromagnetic stirring from an oscillating magnetic field can improve the metal mixing in wire feed laser beam welding. However, the extra parameters introduced in this technique make the selection of an optimal combination of process parameters more difficult. In the current study, besides the commonly concerned magnetic flux density and frequency, the influence of the magnetic field orientation (magnetic field angle) on the transport of filler metal is studied numerically and experimentally. Ex-situ X-ray fluorescence spectrometer measurements are used to map the metal mixing in the final weld. A three-dimensional transient multi-physical model is developed to reveal the deeper physical essence, considering the coupling between heat transfer, fluid flow, keyhole dynamics, element transport and magnetohydrodynamics. The spatial distribution of the laser energy on the keyhole wall is calculated by a ray tracing algorithm. The results show that the magnetic field with smaller angle with respect to the transverse direction provides better penetration capacity, and its stirring effect can reach the lower part of the molten pool. Therefore, the smaller magnetic field angle produces better metal mixing. A constant downward flow is formed at the lower part of the molten pool when magnetic field of 10° angle is applied, which brings the filler metal to the root region. As the magnetic field angle increases to 40°, the beneficial downward flow changes into a constant upward flow, resulting in a concentration of the filler metal in the upper region. This study provides further insight of the underlying physics in the electromagnetically enhanced laser beam welding, which may guide the optimization of parameters to achieve property homogeneity or to avoid potential defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call