We propose a method to analyze the characteristics of scintillator screens for neutron imaging applications. Using calculations based on the theory of cascaded linear steps as well as experimental measurements, we compared the characteristics of different lithium- and gadolinium-based scintillator screens. Our results show that, despite their much lower light output, gadolinium-based scintillators outperform lithium-based scintillators in terms of noise characteristics for a variety of imaging setups. However, the relative performance of scintillator screens is highly dependent on the other setup characteristics such as the beam spectrum, field of view, used optical lens and size of the camera sensor. Consequently, the selection of the best scintillator screen – as well as the scintillator characteristics assessment in new developments – requires a systematic consideration of all these elements, as enabled by the framework presented here.