Trunk diseases create tremendous problems for the viticulture industry causing significant economical losses due to reduced yields, increased crop management costs for cultural and chemical preventive measures, and shortened life span of the vines (Munkvold et al., 1994; Bertsch et al., 2013). No cures are currently available and the diseased wood is typically removed to limit the spread of infection to other permanent structures of the vine. Knowledge of the mechanisms responsible for the development of these diseases is still limited. Recent advancements in genome sequencing technologies (so-called, Next Generation Sequencing) allow us to quickly catalog the entire repertoire of virulence functions of a plant pathogen, a rapid acquisition of a huge amount of information for organisms that were previously uncharacterized. We have recently released the draft genome sequences of pathogens associated with three major trunk diseases of grapevine: esca dieback (Phaeoacremonium aleophilum), botryosphaeria dieback (Neofusicoccum parvum), and eutypa dieback (Eutypa lata). All data, including the raw sequencing data, have been deposited in public databases (GenBank WGS and SRA archives) and are also hosted on the Cantu Lab website (http://cantulab.github.com). The data is freely available to anybody with no restrictions. Sequencing, assembly and preliminary genomic analyses are described in the journal Genome Announcements published by the American Society of Microbiology (Blanco-Ulate et al., 2013a,b,c). These one-page reports provide scientists that want to use the genomic information with details on the pathogen strains sequenced and how the sequencing and assembly were performed. With the exception of the genome of Botrytis cinerea (Amselem et al., 2011) the fungal agent of bunch rot, to our knowledge these are the first genomes of fungal grape pathogens publicly available. Updates to the current genome versions will be readily shared through the Cantu lab website hosted by GitHub (http://github.com), which will also provide a centralized repository for bioinformatic scripts and pipelines used in the genome analyses. The availability of newer versions will be communicated through Twitter (@CantuLab), or any social media that is widely used. By sharing these novel genomic sequences through rapid public release, we hope to stimulate research/scientific crowdsourcing to understand how these destructive pathogens cause disease, reducing grapevine yield and lifespan. This aggregation of talent and complementary expertise, with no need to initiate formal collaborations, will significantly reduce the time needed to solve these critical viticulture problems. We also hope that our openness will help promote the more collaborative model of scientific approach.
Read full abstract