Abstract. The article investigates the method of peridynamics, which is an alternative approach to solving destruction problems based on integral equations. It is assumed that particles in a continuum interact with each other at a finite distance, as in molecular dynamics. Damage is part of the theory at the level of two-particle interactions, so damage finding and destruction occurs when solving the equation of motion. During this work, bondbased and state-based peridynamics models of destruction used in the Sandia Laboratory were described and implemented within the framework of the MoDyS molecular dynamics software package. In the bond-based model, the defining relationship is the bond stiffness function, which corrects the force of particle-particle interaction and imposes a restriction on the use of the Poisson’s ratio. The state-based model generalizes the bond-based approach and may be applied to materials with any Poisson’s ratio. The relationship of both models is ascertained. Calculation convergence is demonstrated on the example of a one-dimensional elasticity problem. The possibility of using the implemented models for fracture problems is also shown.