Abstract

In this research, we investigate an optimal control problem governed by elliptic PDEs with Dirichlet boundary conditions on complex connected domains, which can be utilized to model the cooling process of concrete dam pouring. A new convergence result for two-dimensional Dirichlet boundary control is proven with the Fourier finite volume element method. The Lagrange multiplier approach is employed to find the optimality systems of the Dirichlet boundary optimal control problem. The discrete optimal control problem is then obtained by applying the Fourier finite volume element method based on Galerkin variational formulation for optimality systems, that is, using Fourier expansion in the azimuthal direction and the finite volume element method in the radial direction, respectively. In this way, the original two-dimensional problem is reduced to a sequence of one-dimensional problems, with the Dirichlet boundary acting as an interval endpoint at which a quadratic interpolation scheme can be implemented. The convergence order of state, adjoint state, and Dirichlet boundary control are therefore proved. The effectiveness of the method is demonstrated numerically, and numerical data is provided to support the theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call