Abstract

The wave field of an elastic half-layer is constructed, when a dynamic normal load distributed over a rectangular area acts on upper face at the initial moment of time. The lower face of the half-layer is rigidly fixed to the foundation, and the side border is in the conditions of a smooth contact. The method of decomposing the system of motion equations into a system of equations and an independently solvable equation is used, this approach was proposed by Popov~G.~Ya. Laplace and Fourier integral transformations are applied directly to the motion equations and boundary conditions, which reduces the problem to a vector one-dimensional boundary value problem, which is solved by the matrix differential calculus method. The output displacements are obtained using inverse integral transformations. The case of steady oscillations was considered and the amplitude of vertical displacement occurring in the layer was analyzed depending on the shape of the distributed load section, the material of the layer medium and the values of the natural frequency of the layer oscillations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call