The evidence presently available suggests that the parasympathetic nervous system and sympathetic-parasympathetic interactions could play a role in the pathophysiology of cardiovascular disorders and, specifically, in hypertension. A loss of sensitivity of the baroreceptor reflex is one of the fundamental mechanisms underlying the deficits found in parasympathetic cardiac control. The baroreceptor reflex is a basic mechanism for the regulation of blood pressure, a powerful source of vagal afferent input to the central nervous system, and one of the most important physiological mechanisms affecting efferent cardiac vagal activity. This paper describes a computerized system for the on-line analysis of the baroreceptor cardiac reflex function using the noninvasive spontaneous sequence method in the time domain. The system provides feedback of the baroreceptor reflex sensitivity (the change in heart period per unit change in systolic blood pressure) differentially both when the systolic blood pressure is increasing and when it is decreasing. The accuracy of the described system has been tested against the conventional off-line procedure. None of the parameters supplied by the analysis show a significant difference between the on-line and off-line methods. These results confirm the accuracy of the on-line system to analyze baroreceptor cardiac reflex function.