Extensive application of organophosphorus pesticides such as phenthoate results in its abundance in ecosystems, particularly in waterbodies, thereby providing the impetus to assess its role in aquatic organisms. However, the impact of phenthoate on marine algal physiological and proteomic response is yet to be explored despite its biological significance. In this study, we thus ought to investigate the impact of phenthoate in the marine dinoflagellate Prorocentrum lima, which is known for synthesizing okadaic acid (OA), the toxin responsible for diarrhetic shellfish poisoning (DSP). Our results showed that P. lima effectively absorbed phenthoate in seawater, with a reduction efficiency of 90.31% after 48 h. Surprisingly, the provision of phenthoate (100 and 1000 µg/L) substantially reduced the OA content of P. lima by 35.08% and 60.28% after 48 h, respectively. Meanwhile, phenthoate treatment significantly reduced the oxidative stress in P. lima. Proteomic analysis revealed that the expression level of seven crucial proteins involved in endocytosis was upregulated, suggesting that P. lima could absorb phenthoate via the endocytic signaling pathway. Importantly, phenthoate treatment resulted in the downregulation of proteins such as polyketide synthase (PKS)− 2, Cytochrome P450 (CYP450)− 1, and CYP450–2, involved in OA synthesis, thereby decreasing the OA biosynthesis by P. lima. Our results demonstrated the potential role of P. lima in the removal of phenthoate in water and exemplified the crucial proteins and their possible molecular mechanisms underpinning the phenthoate remediation by P. lima and also the regulatory role of phenthoate in restricting the OA metabolism. Collectively, these findings uncovered the synergistic mechanisms of phenthoate and P. lima in remediating phenthoate and reducing the toxic impact of P. lima.