There were derived many forms of theories of heat during the past three hundred years. At its origins, thermodynamics was the study of heat and engines and therefore, we should be connected to these roots. In this model we present thermons as carriers of heat from hot bodies to cold bodies. The flow of heat is modelled as the transfer of angular momentum of these thermons in the direction from the higher angular momentum to the lower angular momentum of thermons. The mechanical equivalent of heat J is defined as the ratio of the angular momentum of thermons to the temperature of the surrounding. This model newly defines the quantity of heat – entropy S – as the ratio of the angular momentum of thermons to the temperature of the surrounding. This model can open a new window to the microworld where quantum particles transfer their heat content in one direction. However, this direction can be changed via the work done on these quantum particles and to reverse the flow of the angular momentum from lower angular momentum to higher angular momentum of those quantum particles. It will be shown that these very well-known formulae of S to all scholars might still keep some hidden surprising properties.