Abstract
AbstractOcean and climate drivers affect the distribution and abundance of marine life on a global scale. Marine ecological forecasting seeks to predict how living marine resources respond to physical variability and change, enabling proactive decision‐making to support climate adaptation. However, the skill of ecological forecasts is constrained by the skill of underlying models of both ocean state and species‐environment relationships. As a test of the skill of data‐driven forecasts for fisheries, we developed predictive models of catch‐per‐unit‐effort (CPUE) of tuna and billfish across the south‐west Pacific Ocean, using a 12‐year time series of catch data and a large ensemble climate reanalysis. Descriptors of water column structure, particularly temperature at depth and upper ocean heat content, emerged as useful predictors of CPUE across species. Enhancing forecast skill over sub‐seasonal to multi‐year timescales in any system is likely to require the inclusion of sub‐surface ocean data and explicit consideration of regional physical dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.