Speech intelligibility is strongly affected by the presence of maskers. Depending on the spectro-temporal structure of the masker and its similarity to the target speech, different masking aspects can occur which are typically referred to as energetic, amplitude modulation, and informational masking. In this study speech intelligibility and speech detection was measured in maskers that vary systematically in the time-frequency domain from steady-state noise to a single interfering talker. Male and female target speech was used in combination with maskers based on speech for the same or different gender. Observed data were compared to predictions of the speech intelligibility index, extended speech intelligibility index, multi-resolution speech-based envelope-power-spectrum model, and the short-time objective intelligibility measure. The different models served as analysis tool to help distinguish between the different masking aspects. Comparison shows that overall masking can to a large extent be explained by short-term energetic masking. However, the other masking aspects (amplitude modulation an informational masking) influence speech intelligibility as well. Additionally, it was obvious that all models showed considerable deviations from the data. Therefore, the current study provides a benchmark for further evaluation of speech prediction models.
Read full abstract