Abstract

A discrete cosine transform (DCT) domain speech enhancement algorithm is proposed that models the evolution of speech DCT coefficients as a time-varying autoregressive process. Rao-Blackwellized particle filter (RBPF) techniques are used to estimate the model parameters and recover the clean signal coefficients. Using very low-order models for each coefficient and operating at a decimated frame rate, the proposed approach provides a significant complexity reduction compared to the standard full-band RBPF speech enhancement algorithm. In addition to the complexity gains, performance is also improved. Modeling the speech signal in the DCT-domain is shown to provide a better fit in spectral troughs, leading to more noise reduction and less speech distortion. To illustrate possible frequency-dependent processing strategies, a hybrid structure is proposed that offers a complexity/performance trade-off by substituting a simple DCT Wiener filter for the DCT-RBPF in some bands. In comparisons with high performing speech enhancement algorithms using wideband speech and noise, the proposed DCT-RBPF algorithm achieves higher scores on objective quality and intelligibility measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.