The increase in food waste generation has resulted in significant challenges for its sustainable management. Anaerobic digestion coupled with microalgae-based ponds for digestate treatment can be used as a low-cost eco-friendly technology approach. In this case, microalgal biomass harvested from the ponds may be valorized into bioenergy (biogas) and soil conditioner and/or biofertilizers. The aim of the present study was to evaluate the microalgal biomass produced from a food waste digestate treatment ponds as agricultural fertilizer. For this purpose, microalgal biomass was tested before and after anaerobic digestion and co-digestion with food waste, exploring its potential for valorization. The inorganic fertilizer urea and soil with no fertilization were also used as treatments. The experimental design consisted of applying the treatments in pots cultivated with hybrid grass Brachiaria cv. Sabiá and distributed in randomized blocks in a controlled greenhouse. Microalgal biomass was mainly composed by Scenedesmus sp.. The assessed parameters showed comparable results on plant growth (i.e. number of tillers, fresh and dry matter and Chlorophyll content index) for fresh and digested microalgal biomass and inorganic fertilizer. Furthermore, it was observed that fresh microalgae provided the highest Phosphorus content in the leaf (21 %). Additionally, there were increases of 9 % in Nitrogen and 12 % in organic matter in the soil after applying digested microalgae compared to the control group without any fertilization. Finally, experimental data obtained suggests that microalgae-based biofertilizer holds the potential to replace inorganic fertilizer as a nutrient source. Moreover, it contributes to the valorization of by-products from organic waste treatment.