Abstract

Methane emissions from flooded rice paddies are a major source of atmospheric methane and represent a significant greenhouse gas with high climate-forcing potential due to anthropogenic activities globally. For sustainable agriculture, it is necessary to find effective methods for mitigating greenhouse gas emissions without reducing crop productivity. We investigated mechanisms to reduce methane emissions during rice cultivation by applying rice straw, rice husk biochar, humic acid, and a humic acid–iron complex, assessing greenhouse gases and rice yield over a single season. The results demonstrated that the treatment plots with rice straw and the humic acid–iron complex significantly reduced methane emissions (563 ± 113.9 kg ha−1) by 34.4% compared to plots treated with rice straw alone (859 ± 126.4 kg ha−1). Rice yield was not compromised compared to the control group treated with only NPK fertilizer, and growth in terms of plant height and tiller number was enhanced in the plots treated with rice straw and the humic acid–iron complex. Conversely, the plots treated solely with rice husk biochar and humic acid did not show a methane reduction effect when compared to the NPK treatment. The humic acid–iron complex has demonstrated potential as a methane mitigation agent with practical applicability in the field, warranting further long-term studies to validate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.