Variation in the subtle differences between the right and left sides of bilateral characters or fluctuating asymmetry (FA) has been considered as an indicator of an organism's ability to cope with genetic and environmental stresses during development. However, due to inconsistency in the results of empirical studies, the relationship between FA and stress has been the subject of intense debate. In this study, we investigated whether stress caused by artificial bidirectional selection for body size has any effect on the levels of FA of different morphological traits in Drosophila ananassae. The realised heritability (h2) was higher in low-line females and high-line males, which suggests an asymmetrical response to selection for body size. Further, the levels of FA were compared across 10 generations of selection in different selection lines in both sexes for sternopleural bristle number, wing length, wing-to-thorax ratio, sex combtooth number and ovariole number. The levels of FA differed significantly among generations and selection lines but did not change markedly with directional selection. However, the levels of FA were higher in the G10 generation (at the end of selection) than G0 (at the start of selection) but lower than the G5 generation in different selection lines, suggesting that the levels of FA are not affected by the inbreeding generated during the course of selection. Also, the levels of FA in the hybrids of high and low lines were signifi cantly lower than the parental selection lines, suggesting that FA is influenced by hybridisation. These results are discussed in the framework of the literature available on FA and its relationship with stress.