Abstract

In the present study, the effect of thermal stress on the variability and fluctuating asymmetry (FA) in different morphological traits, viz., thorax length (TL), sternopleural bristle number (SBN), wing length (WL), wing-to-thorax (W/T) ratio, sex comb tooth number (SCTN) and ovariole number (ON), was investigated in 10 isofemale lines of Drosophila ananassae. The phenotypic and genetic variability is higher in the flies reared at low (20 °C) and at high (30 °C) temperatures as compared to that of standard (25 °C) temperature. Further, the levels of FA of measured traits differed significantly among the three temperature regimes except SBN and SCTN in males and SBN and W/T ratio in females. Moreover, the magnitude of positional fluctuating asymmetry is similar in males reared at three different developmental temperatures for SBN and SCTN but it varies significantly for SBN in females. However, when FA across all the traits was combined into a composite index (CFA), significant differences were found for both temperature regimes and sexes. Males showed higher CFA at 30 °C whereas in females it was higher at 20 °C. The results suggest that temperature increases the levels of variability and FA but the effect seems to be trait and sex specific in D. ananassae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call