It is well known that the fatigue strength of welded structures is in general independent from the material strength. In case of high-strength steels, however, a significant improvement in the fatigue behaviour can be realised through post-treatment processes. This paper deals with the effect of high-frequency mechanical impact (HFMI) on the fatigue behaviour of a range of steels starting from mild construction steel (S355) to ultra high-strength steel (S960). The experiments involve fatigue tests at a stress ratio of R = 0.1 on butt welds, T-joints, and longitudinal attachments on 5 mm, thin-walled specimens. The fatigue assessment was performed in accordance to the nominal and the notch stress approach taking the HFMI condition into account. Finally, a novel method is outlined to evaluate the notch stress fatigue behaviour of HFMI-treated joints made of high-strength steel. Applicability of this new HFMI notch stress approach is shown through fatigue assessment of about 330 HFMI post-treated specimens taken from both literature and own test results. Further work focuses on the expansion of the introduced HFMI notch stress model for load spectra influence covering overloads and multiaxial fatigue.
Read full abstract