We theoretically study the spin-texture dynamics and the transverse asymmetric charge deflection induced by the polaron in a quadrilateral prism-shaped nanotube with the Rashba and Dresselhaus spin–orbit coupling (SOC). We reveal the polaron gives rise to the nontrivial local spin textures in the nanotube within the cross section plane. The spins demonstrate oscillations and the oscillating patterns are dependent on the SOC type. For the nanotube containing a segment of the ferromagnetic domain, the sizable asymmetric charge deflections could additionally take place, namely, the anomalous Hall effect. The amount of the deflected charges is determined by the strength and orientations of the ferromagnetic magnetization as well as the SOC type. The work provides a valuable insight of the coherent transport of polaron through a quasi-one-dimensional nanotube with Rashba and Dresselhaus SOC and open avenues for the potential device applications.