Abstract
Topologically protected non-trivial spin textures (e.g. skyrmions) give rise to a novel phenomenon called the topological Hall effect (THE) and have promising implications in future energy-efficient nanoelectronic and spintronic devices. Here, we have studied the Hall effect in SrRuO3/La0.42Ca0.58MnO3 (SRO/LCMO) bilayers. Our investigation suggests that pure SRO has hard and soft magnetic characteristics but the anomalous Hall effect (AHE) in SRO is governed by the high coercivity phase. We have shown that the proximity effect of a soft magnetic LCMO on SRO plays a critical role in interfacial magnetic coupling and transport properties in SRO. Upon reducing the SRO thickness in the bilayer, the proximity effect becomes the dominant feature, enhancing the magnitude and temperature range of THE-like signatures. The THE-like features in bilayers can be explained by a diffusive Berry phase transition model in the presence of an emergent magnetic state due to interface coupling. This work provides an alternative understanding of THE-like signatures and their manipulation in SRO-based heterostructures, bilayers and superlattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.