Abstract
Two-dimensional (2D) intrinsic multiferroics have long been pursued not only for their potential technological applications but also as model systems for studying emergent quantum phenomena and coupling mechanisms between various order parameters in low-dimensional space. However, the realization of 2D multiferroics is still a challenge. In this paper, we reveal that 2D AgCr2X4 (X = S or Se) crystals, which have been synthesized from the non-van der Waals (non-vdW) AgCrX2 bulk phase, are type I half-metallic/metallic multiferroics in which ferroelectricity and ferromagnetism coexist. The off-centering displacement of the Ag ion introduces out-of-plane polarization, and the magnetism originates from the interactions between Cr atoms. Remarkably, AgCr2Se4 shows topologically nontrivial spin textures, such as Meron pairs and Néel-type skyrmions, under suitable temperatures and magnetic fields. Our findings demonstrate that 2D multiferroics can be achieved from non-vdW materials and in turn open a new avenue for 2D multiferroics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.