We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.