Abstract

The problem of finding a point in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</sup> , from which the sum-of-distances to a finite number of nonempty, closed and convex sets is minimum is called generalized Fermat-Torricelli Problem (FTP). In applications, along with the point that minimizes sum-of-distances, it is important to know the points in the convex sets at which the minimum sum-of-distances is achieved. Various formulations existing in literature do not involve finding the optimal points in the convex sets. In this letter, we formulate a non-smooth convex optimization problem, with both the point/set of points which yields the minimum sum-of-distances as well as the corresponding points in the convex sets as primal variables. We term this problem as extended FTP (eFTP). We adopt non-smooth projected primal-dual dynamical approach to solve this problem. The proposed dynamical system can exhibit a continuum of equilibria. Hence we show semistability of the set of optimal points, which is the pertinent notion of stability for such systems. A distributed implementation of the primal-dual dynamical system is also presented in this letter. Four illustrative examples are considered for the simulation based validation of the solution proposed for eFTP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call